SERVICEDDOCUMENTATION FOR

 in CD-JUKEBOXI. SERVICE MODUL

II. COMPACT DISC PLAYER MECHANISM CDM 3

III. CD-CONTROL BOARD
importionst checte that tramisistor 6314 (96CS 4515) whored a is ahooted corects! this in for earty CD CONTROL Bores. wote done on broced!

Servicemodul	53	880	401	00	CD-BOx
for check procedure of	CD-player.				

The CD control board is operated from the SCC-unit, which sends control signals to play the selected chapter from the disc. With the service module the $C D$ components can be checked separately. It is to be connected at P6 and P14 on the CD control board, lid has to be removed before.

At first the disc must be in play position (operate 7 in service program) and the toggle switch SERVICE on chassis in position "off".

The following key operation from $C D$ control unit has the same function as during normal selection controlled by the sCc-unit.

CD stops, number of titles is indicated.
Searching a
previous or
later track on
the same disc
return to "NEXT"
and continue

If no titles on same disc are stored in SCC press "OPEN/CLOSE". Command is transferred during
movement of gripper arm.

The other remaining buttons on CD-Servicemodul have following functions:

Preview: Returns to the previous track

| FR | : Fast reserve search |
| :--- | :--- | :--- |
| FF | : Fast forward search |

Repeat : for reoeatins a disc
Pause : interrupts play and continues at the same passage by pressing key again


```
Servicemodul C D - C o n t rol
```


IL

Bestellnummer/

Compact disc player MECHANISM

SERVICING HINTS

To prevent loose metal objects from getting in the CD mechanism. it will be necessary to see to a clean repair station.

The objective can be cleaned with a blow brush.
When effecting repairs to, or making measurements on the CD mechanism, be careful not lo damage the fiat springs of the focusing unit.

THE PHOTODIODES AND THE LASER ARE MORE SENSITIVE TO ELECTROSTATIC DISCHARGES THAN MOS ICS.
 CARELESS HANDLING DURING SERVICING MAY REDUCE LIFE EXPECTANCY DRASTICALLY. FOR THIS REASON CARE SHOULD BETAKENTHAT DURING SERVICiNG THE POTENTIALS OF THE AIDS ANDYOURSELFARE EQUALTOTHATOFTHE SCREENING OF THE SET.

Leadless components have been applied in the set. For the insertion and removal of leadless components see the figure below.

The disc should always bed down well on the turntable. If the tray mechanism has to be demounted for repair, one or several separate disc hold-downs should be used. The CD mechanism then can function normally in the set.

Do not loosen any screws other than those mentioned in the hints

- ESD

All ICs and many other semi-conductors are susceptible to electrostatic discharges (ESD). Careless handling during repair can drastically reduce life expectancy.
When repairing, make sure that you are connected via a wrist wrap with resistance to the same potential as the chassis of the sat. Keep components and aids also at the same potential.

Servicing the RAFOC unit

The RAFOC unit consists of item numbers 51, 53, 56 and 59.

- Loosen the foil PCB by pulling the clamp, item no. 52, out of the motor chassis.
- Undo the two nuts $\mathrm{M} 2,5 \times 6$ and remove the bearing plate item no. 54. Item no. 57 and item no. 58 are clamped into the plate.
- Remove the defective RAFOC unit.
- Mount the new RAFOC unit in reverse order.
- Check that the arm runs clear and check the angle setting.
For the angle setting see the next chapter.

In the player chip components have been applied. For insertion and removal of chip components see the figure below

Test discs

It is important that the test discs be treated with great care.
The disturbances on the discs (black spots, finger-prints. etc.) are exclusive and are unambiguously positioned.
Damages may cause extra drop-outs etc.. thus putting an end to the exclusivity of the intentional error on the disc.
In that case it is not possible anymore to check for example the good functioning of the track defector.

Measurements on op-amps

In the electronic circuits. op-amps have frequently been used.
The applications include amplifiers. filters, invertors and buffers.

In those cases where in one way or the other feedback has been applied, the voltage difference at the differential inputs converges to zero.
This applies to both DC and AC signals.
The cause can be traced to the properties of an ideal op-amp ($Z_{i}=\infty, G=\infty, Z_{o}=0$).
If one input of an op-amp is directly connected to ground, it will be virtually impossible to measure at the
Inverting and non-inverting inputs.
In such cases only the output signal will be measurable.
That is why in most cases the AC voltage at the inputs will not be given.
The DC voltages at the inputs are equal.
Stimulating with "0" and "1"
During faultfinding it is sometimes necessary to connect certain points to ground or to supply voltage.
As a result certain circuits can be brought in a desired state, thus shortening the diagnosis time.
In a number of cases the relevant points are outputs Of op-amps.
These outputs are short-circuit-resistant, that is. they can be brought to " 0 " or ground without problems. The output of an op-amp, however, should never be connected directly to the supply voltage.

Measurements with an oscilloscope

During measurements with an oscilloscope it is recommended to use a 1:10test probe, since a $1: 10$ probe has a considerably smaller input capacitance than a 1:1 probe.

Selection of the ground potential
It is very important to select a ground point that is as close as possible to the test point

Conditions for injection

- Injection of levels or signals from an external source should never take place if the relevant circuit has no supply voltage
The injected levels or signals should never be greater than the supply voltage of the relevant circuit.

GENERAL CHECK POINTS

a. Ensure that the disc and objective are clean (remove dust. fingerprints, etc.) and use undamaged discs.
b. Check that all supply voltages are present and that they have the correct values.
c. Check the good working of the microprocessor by means of the built-in test programme and servicing programme.

Attention:

Do not disconnect the player from the CD-board under power:

In this case

 electurcal pants of the CD-player may loe damaged.Height setting of the turntable
For this adlustment the set should be in the position of normal end use．
－Connect a DC voltmeter between the FOCUS＋and the FOCUS－of the focus motor（for the connections refer to the service manual of the set into which the CDM has been built）．
－Play back track 1 of test disc 5 （code number 4822 397 30096）．disc without defects．
－Adjust the turntable height with bearing screw item no． 66 until the voltage across the focusing motor is 0 V $+/-100 \mathrm{mV}$ ．
－Lock the screw with locking paint．
Checking the angle setting
For this adjustment use the glass disc with code number 482239590204 and disc hold－down 482240420725.
－Place the glass disc on the turntable with the disc hold－down．
－Place the CDM under a light source under which there is a straight line（e．g．fluorescent tube with grid）．
－Put the arm in mid－position．Turn the set so that the arm is in parallel with the line under the light source （see Fig．1）．

－Look in the direction and in the prolongation of the line to its reflection on the glass disc and focus lens．
－The reflection in the objective should fall within the surface of the focus lens．（The two reflections are then $=<4 \mathrm{~mm}$ apart）．
－Turn the CDM 90 degrees relative to the previous position（see Fig．2）．
－Repeat the measurement．

Adjusting the angle setting
For the factory adjustment of the angle between disc and light path，a compromise was looked for between minimum angular deviation and minimum friction of the arm．
If．during measurement．it appears that the angle falls outside the specified tolerance，the angle must NOT be adjusted for minlmum deviation，but just within the tolerance．The new setting must be between the old setting and the optimum setting．
After the adjustment the friction of the arm must be checked．
This is done by means of a spring－pressure gauge which is applied at the counterweight．The friction of the arm， measured across the full deflection，may not exceed 25 mN ．
If the friction is too high，the setting should be returned to the old value．Or replace the arm by a new one and check the angle again．

MDA． 00357
T28／633
Fig． 3
－Undo the screws C（see Fig．3）until bearing plate D can be displaced．For the inner screw a hole has been made in the glass disc．
－Correct the angle setting by pushing the bearing plate in the direction shown in Fig． 4.
－Tighten the screws C and take care that the setting does not drift．
－Now double check the angle setting in two directions．
－After the angle setting the height setting of the turntable must be checked．

-107
にレーニ
－（́）

Fig． 4

3-2

Checking the motor control [Hall control)

- Disconnect the Vc connector (for the connection refer to the service manual of the apparatus into which the CDM has been built).
- Connect channel A of a dual beam oscilloscope to pin 3 of IC6083(a) and channel 8 to pin 1 of IC6083(b). Time base $10 \mathrm{~ms} / \mathrm{div}$. measure in respect to $\mathrm{Vb}+/ 2$.

1 Switch the player on.
2 Inject a voltage of -0.9 V relative to $\mathrm{Vb}+/ 2(!)+/-0.1$ V to pin 04 of the motor PCB.
The voltage may only be injected after the circuit has been connected to the supply voltage.
3 Now sinusoidal signals should be visible on the oscilloscope which, after about 2 sec.. lie symmetrically around the O -axis and which differ 90 degrees in phase relative to one another (see Fig. 5). The maximum ratio of these signals is $1: 2$

Fig. 5
4 At $\mathrm{Vc}=-0.9 \mathrm{~V}+/-0.1 \mathrm{~V}$. the speed should be 600 rpm. The signals then have a frequency of about 30 Hz

- Switch the player off and connect channel A of the oscilloscope to pin 1 of IC6081(a) and channel B to pin 3 of IC6081(b).
- Repeat points 1 through 4.
- Now decrease Vc to -0.3 V.
- At this voltage the motor should still be running well. When all these conditions are met. it may be assumed that the motor and the PCB are all right. If points 3 and 4 are not all right, or if the motor does not rotate well at -0.3 V . the entire motor (item numbers 61 through 67) should be replaced.

POS.	Code number		
51	482232350116		
52	4822	401	10948
53	482253050876		
54	4822520	10601	
56,59	4822	691	30173
57	4822	530	50864
58	4822	520	20429
$61-67$	4822	361	20678
66	4822	502	12529

Version 2

1985-07-01

† ELECTRICAL MEASUREMENTS AND ADJUSTMENTS

For measurements and adjustments on the CD mechanism and the servo + preampl. PCB see the CDM-2 Service Manual.

Specification measurement

Fig. 6

To measure the specification use can se made of audio
test disc 482239730085 .
Use Fin order filter 452239530204 (see Fig. 5) to meas-
ure:

- Total harmonic distortion (ThD)
- Intermodulation distortion
- Signa-to-noise ratio (SiN)

DETAILED MEASURING METHOD FOR THE DECODER CIRCUIT

HINTS

Test discs

It is important to treat the test discs with great care. The disorders on the discs (black spots, fingerprints, etc.) are exclusive and unambiguously positioned. Damage may cause additional drop-outs etc. rendering the intentional errors no longer exclusive. In that case it will, no longer be possibie to check e.g. the good working of the track detectors.

Measurements on op-amps

In the electronic circuits 0, -amps nave been used frequently. Some of the applioations are amplifiers. flers. inverters and buffers.

In those cases where in one way or the other teeoback has been applied the vetage difference at the diforercial inputs converges to zer "ris applies to both DC and ado sigriais. The cause can de traced to the properties de an ideal op-amp $\left(Z_{1}=x, G=x, Z_{0}=0\right)$. If one ingut at an opamp is directly connected to ground it will be virwaly impossible to measure at the inverting and the mon-rverting inputs. In such cases only the output signal will be measurable.

That is why in most cases the $A C$ voltage at the inputs will not be given. The DC voltages at the inputs are equal.

Stimulation with " 0 " and "1"

During troubleshooting sometimes certain points should be connect to ground or supply voltage. As a result certain circuits can be brought in a desired state thus shortening the diagnosis time. In a number of cases the related points are outputs of op-amps. These outputs are short-circuit--~istant. i.e. ther ニan ba brought to "n" er ground withnut problems.
The output of an op-amp, however, should never be connected directly to the power supply voltage.

Measurements on microprocessors

inputs and outputs of microprocessors should never be connected directly to the power supply voltage. The inputs and outputs should only be brought to " 0 " or ground if this is stated explicitly.

Measurements with an oscilloscope
During measurements with an oscilloscope it is recommended to measure with a 1:10 test probe. Since a 1:10 probe has a considerably smaller input capacitance than a 1:1 probe.

Selection of ground potential

It is very important to select a ground point that is as close as possible to the test point.

Conditions for injection
-Injection of levels or signals from an external source should never take place if the related circuit has no supply voltage.
-The injected levels or signals should never be greater than the supply voltage of the related circuit

Continuous burning of the laser

- Bridge capacitor 2305 on the decoding panel.
- ConnectSi (= pin 20 of IC6101 on the servo + preampl. panel) to ground.
- Switch on the supply voltage.
- Now the laser will burn continuously.

Indication of test points
In the drawings of the diagrams and the panels the test points have been indicated by a numbor(r.g. (2)), to which the measuring method rofers. In the measuring method below the symbol (\rangle) has been omitted for the test points indicated.

GENERAL CHECKPOINTS

In the detailed measuring method below a number of general conditions, required for a properly functioning set, will not be mentioned. Before the detailed measuring method is started, these general points should first be checked.
a. Ensure that disc and objective are clean (remove dust, fingerprints, etc.) and work with undamaged discs.
b. Check if all supply voltages are present and if they have the correct values
c. Check the aood working of the two microprocessors by means of their built-in test programme and servicing programme.

Method:

Self-test of the decoder uP IC6301

With the self-test the following parts of the uP are tested:

- RAM
- ROM
- TIMER
- serial I/O interface
- I/O gates
- Interrupt the $I^{2} C$ and $I^{2} D$ connections on connector pins 46-I and 46-3 of the decoder panel.
- Unsolder pins 1. 7,26 and 27 of the decoder uP
- Render pin 2 of the decoder uP "low" (ground) and switch on the supply voltage.
- The test starts if oin 2 is rendered "hiqh" again (interrupt the connection to ground).
- If all tests are positive pin 1 of the decoder uP will go low within is

Self-test of the control uP
With this self-test the following parts of the uP are tested:

- RAM
- ROM
- TIMER
- serial I/O interface
- I/O gates
- Interrupt the $1^{2} \mathrm{C}$ and $\mathrm{I}^{2} \mathrm{D}$ connections on connectors P5-4 and P5-5 on the CD Control Print
- Desolder the 6 connections 19 through 24 from the EEPROM panel.
- Render pin 2 of the control display uP "low" (ground) and switch on the supply voltage.
- The test starts if pin 2 is rendered "high" again (= interrupt the connection to ground).
- If all tests are positive, pin 1 of the control + display uP will go "low" again within Is.

Initiation of the service programme of the uP

- Servicing position "0" Simultaneously depress the PREVIOUSNEXT and TIME/TRACK keys.
Keep these three keys depressed while the mains voltage is switched on.

This is the stand-by mode: on the display appears " 0 "
in this state it is possible 10 move the aim by means of the SEARCH FORW. and SEARCH REV. keys with a
minimum torque to the outside and to the inslde. respectively.
Thus the fre motion of the arm across the disc can de checked.

Servicing position "1"
From servicing position "0" the player can be brought in servicing position " 1 " by depressing the NEXT key.

In this state the laser emits light and the objective starts to focus.

When the focal point has been reached "1" appears on the display.

When no disc has been inserted the objective moves $16 x$ to and fro.
Then the player assumes servicing position "0" again
As in servicing position " 0 ". the arm can be moved across the diameter of the disc by means of the SEARCH FORW. and SEARCH REV. keys.

- Servicing position "2"

This position can be reached bv depressing the NEXT key after servicing position "1" has' been reached. The turntable motor starts to run.
On the display appears " 2 ".
In preparation of the transition to servicing position " 3 " the arm is sent to the centre of the disc.

- Servicino position "3"

This position can be reached by pressing the NEXT key after servicing position "2" has been reached.
The radial control is switched on.
The Sub-code information is ignored.
Mute is high so that the music information is released.
On the display appears " 3 ".
(Depending on the length of the lead-in track. music will be played afler about 1 minute).
In this state it is possible to move the arm by means Of the SEARCH FORW. and SEARCH REV. keys to the outside and inside. respectively.
Now the motion is controlled by the up and the arm moves by steps of 64 tracks as long as the key is depressed.

If one of the servicing positions 1,2 or 3 is disturbed (for example braking or removing the disc). the player assumes servicing position " 0 " again.

The servicing programme can be left by switching the mains switch (POWER ON/OFF on and off (HARDWARE reset).

I DECODER uP

Self-test decoder uP 6301

See self-test of the decoder uP sub.: "General check points".

- Reset (pin 17)

When the supply voltage is switched on, a positive pulse should be present.

- X-TAL out (pen 16; test point 31)

The frequency of this signal should be 6 MHz .

- Si (pin 21; test point 21)

When the $\overline{\text { Si }}$ signal (= Start Initialization) is "low", the laser supply and the focusing control are switched on.

Position of player	POWER ON	Servicing pos. 1	PLAY
$\overline{\text { SI signal }}$	"high"	"low"	"low"

- RD (pin 7; test point 24)

The RD signal (= Ready) goes "high" when the focal point has been found.
So there should be a disc on the turntable.

- MSTP (pin 20; test point 78)

When. after RD "high'. the MSTP is "high" for a short moment (> 0.2 set), the turntable motor control will be switched on.
The turntable motor is controlled by the MC-signal (test point 81).
To check MC, see: "Decoder A IC". To check the turntable motor control. sea CDM-2 Service Manual:
"Checking of the motor control".

- BO (pin 8 ; test point 36)

B1 (pin 9 ; test point 34)
82 (pin 10; test point 33)
83 (pin 11; test point 32)
With the $\mathrm{BO}+\mathrm{B3}$ signals

- The radial control is switched on.
- The level on the DAC output is controlled.
- In the SEARCH mode, there should be activity on all 4 test points.
- In the following positions the signals $\mathrm{BO}+\mathrm{B} 3$ are stable:

signal	STOP	PLAY	Service pos. 0,1,2	Service pos. 3
B0	"low"	"high"	"low"	"high"
B1	"high	"high"	"high"	"high"
B2	"high"	"hhight	"high"	"high"
B3	"low"	"low"	"low"	"low"

- $\overline{\mathrm{TL}}$ (pin 12: test point 16)
- The TL signal (Track Loss) is used to tell the uP that track loss threatens. The uP then can give correction signals with $60+B 3$
- I" the "SEARCH" mode, or when the player is bumped against, there are pulses on test point 16.
- REdig (pin 13: test point 37)

The REdig signal (= Radial Error Digital = radial deviation) is used to determine the place of the arm relative to the track and to check/correct in case Of track jumping or bumping against the player.
in servicing position 3 or in the PLAY or PAUSE mode, a square wave should be present on test point 37.
Because of frequency variations, this square wave is hard to trigger.

- DODS (pi" 22; test point 19)

The DODS signal (= Drop Out Detector Suppression) avoids that Drop-Out signals influence the arm control during track jumping.

II DECODER-A IC

- Check the MC signal (pin 17; test point 81)
- In stand-by mode, the MC signal (Motor Control) corresponds to the figure below.
Note:
The repetition time of the MC signal is 11.3 usec
- Place a disc on the turntable.
- In position PLAY or SERVICE POSITION 3. the MC signal corresponds to the figure below.
Note:
During start-up the duty cycle is 98%. then the duty cycle of the signal becomes about 50%.

See also Service Manual CDM-2: "Check of the motor control".

- Check the HF signal on test point 65 (eye pattern)pin 25
- Insert a disc.
- The HF signal should be present and be stable in the PLAY mode and in:
SERVICING POSITION 3 after the run-i" track has been read.
- In SERVICING POSITION 2 and during reading of the lead-i" track the HF signal is not stable.

Position of oscilloscope 0.5 us/DIV
Amplitude $=1.5 \mathrm{Vpp}$

\qquad

- Check the EFAB signal (Error Flag from Decoder-A to Filter-B) et test point 74 (pin 36)
- Place test disc 5A on the turntable.
- During playback, EFAB fulses should be present at test point 74 for soft braking of the disc and during fast search (F.Forward, F.Reverse).
Note:
Filter-B IC is capable of interpolating linearly 8 successive EFAB pulses.

0 Check the C\&channel signals

- When the uP panel" is applied, (a sub-printed circuit board) above the decoder which houses IC6451: MAB6441P/T012, the test points 75,76 and 77 are not connected.
- Place a disc on the turntable.
- Select one of the following positions: SERVICE POSITION 3 or position PLAY
- Trigger on the QRA signai (Q-channel Request Acknowledge) test point 75 ; pin 30.
- Check signals QRA at test point 75 (pin 30)

QCL at test point 76 (pin 31). IQ-channel-clock)
and their interrelation.

- There should then be activity at test point 77 (pin 29) QDA (Q-channel Data).

Note:

The QRA request is initiated by decoder uP (QRA "high"). Then Decoder-A answers this request (QRA goes "low'). With the next leading clock pulse (QCL) the QRA signal is rendered "high" again by the decoder uP As soon as the decoder uP has taken in enough information via QDA. QRA will go low again. That is why the QRA times vary each time.

- Place a disc on the turntable.
- Select one of the following positions: SERVICE POSITION 2 or 3 , or position PLAY
- Trigger the oscilloscooe with the WSAB signal (test point 71: pin 39).
- Check sionals:

WSAB at test point 71 (pin 39)
(Word Select from Decoder-A to Filter-B)
CLAB et test point 72 (pin 36)
(Clock from Decoder-A to Filter-B) and their interrelation.

- There must be activity at test point 73 (pin 37). DAAB signal (DATA from Decoder-A to Filter-B).
- Checkthe SSM signal (test point 78; pin 33) = StartStop turntable motor
- Motor start pulse when test point 78 is "high" for $\geqslant 0.2 \mathrm{sec}$.
- Motor stop pulse when test point 78 is "low" for $\geqslant 0.2 \mathrm{sec}$.
Note:
after the motor start pulse. SWAB information (Subcoding Word clock) will become visible at this point. The period time of that signal is 136 usec.

0 Check the subcode clock signals

- Place a disc on the turntable.
- Select one of the following positions:

SERVICE POSITION 3 or position PLAY.

- Trigger the oscilloscope with the SWAB signal at test point 78.
- Check the following signals:

$$
\text { SWAB at test point 78; pin } 33
$$

SCAB at test point 79; pin 35 (Subcode Clock from Decoder-A to Filter B) SDAB at test point 80; pin 34 (Subcode Data from Decoder-A to Filter B)
and their interrelations.
Note:
While the burst of 10 clock pulses. appear on SCAB the Q-channel information is transferred on SDAB. Hereafter the P-bit indication follows.
The P -bit is "high' between two bursts of 10 clock pulses in case of pause indication and "low" in case Of music indication.

- Check the CRI signal

The CRI signal is "low" in case of track jumping.
Player in position SEARCH.
0 Check the DEEM signal (test point 84; pin 32)

- Place test disc 5 on the turntable.
- During playback of track no. 14 (recorded without PRE-EMPHASIS), the DEEM signal should be "low".
- During playback of track no. 15 (recorded with PREEMPHASIS), the DEEM signal should be "high".

III FILTER-B IC

0 Check the signals between Decoder-A IC and Fil-ter-8 IC

- See sub. "II Decoder-A IC"
* Check the X IN signal (test points 69,pin 11 and 70,pin 10)
+Check the timing signals meant for Filter B
(WSAB. CLAB, DAAB signals; test points 71, 72 and 73).
* Check the EFAB signal (test point 74) Decoder A
* Check the subcode clock signals (SWAB, SCAB, SDAB signals: test points 78,79 and 80).
- Check the timing signals between Filter-B IC end DAC IC
- Place a disc on the turntable.
- Select one of the following positions: SERVICE POSITION 3 or position PLAY.
- Trigger the oscilloscope with the WSBD signal (Word Select from Filter B to DAC) test point 85 (pin 18).
Check the following signals:
WSBD at test point 85: pin 18 CLBD at test point 87; pin 16 (Clock signal from Filter B to DAC) and their interrelation.
If an Audio disc is used. there should be activity at test point 86 (pin 15) DABD signal (DATA from Filter B to DAC) If a disc with Digital Data (CD-ROM) is used. this point is continuously switched "low" by transistor 6315. In that case the word "data" appears on the display.

- Check the DOBM signal (Digital Output)
- Place a disc on the turntable.
- Select the stand-by mode (only mains switch depressed).
- Trigger the oscilloscope with the SWAB signal (test point 78).
- Check the DOBM signal (test point 88; pin 14). An empty audio signal has a fixed pattern. See drawing, "Stand-by".
- Select the PLAY mode.

Check the DOBM signal. See drawing "PLAY".

- In position SEARCH the ATSB signal is "low" test point 89; pin 22 (Attenuation Audio Signal)
- Wherthe "uP panel" is applied, (a sub-printed circuit board) that houses IC6451: MAB8441P/T012, test point 89 is not connected.
. Check the MUSB signal test point 90; pin 23 (Soft Mute)
This signal is "low in positions:
PAUSE
NEXT or PREVIOUS when jumping from one track to another.
Fast SEARCH when the Search button is kept depressed for some time.

IV DAC IC (Dual Digital Analog Converter)

0 Check the signals between Filter-B IC and DAC IC
See sub. "Ill Filter-B IC":

* Check the timing signals between Filter-B IC and DAC IC.
- Check the output of the OP-AMP after the DAC IC

Place a disc on the turntable.
In position PLAY or in SERVICE POSITION 3, the ana\log (music) signal should be present at the output of the OP-AMP, after the lead-in track has been read.

V DEEM CIRCUIT
0 Check DEEM circuit

- Place test disc 5 on the turntable.
- During playback of track no. 14 (recorded without PRE-EMPHASIS) the DEEM signal at test point 84 should be "low".
- During playback of track no. 15 (recorded with PREEMPHASIS), the DEEM signal at test point 84 should be "high".
- During playback of track no. 14 the analogue Signal should be present at the source of 6317 (test point 91) and 6318 (test point 92).
- During playback of track no. 15 the analog signal at the source of 6317 (test point 91) and 6318 (test point 92) should be 0 V .

VI KILL CIRCUIT

- During switching on and off the mains voltage the signal on the collector of 6327 (to be measured on a jumper, tp93) should be as indicated in the figure below.

SUPPLY + DECODER PANEL

For coordinates see Page 6-4
Parsumir has TDR 1541 chatp replece whan nosio appenso is audio/ /and nound foderewiry

${ }^{\text {E }}$ - 11 Gips 50 V NPO S1 206						\square		WS120	
1 pF	5\%	482212232479	5,6 E	5\%	462211150394	7.5 k	2\%	4822111	90276
1.5 pF	5\%	482212231792	6. 2 E	5\%	462211190395	8.2 k	2\%	5322 III	90118
1.8 pF	5\%	462212232087	6.8 E	5\%	482211150254	9,1 k	2\%	4622111	90373
2.2 pF	5\%	462212232425	7.5 E	5\%	482211190396	10k	2\%	4822111	90249
3.3 pF	5\%	462212232079	8.2 E	5\%	482211190397	11 k	2\%	4822111	90337
3.9 pF	5\%	462212232081	9.1 E	5\%	462211190398	12 k	2\%	4822111	90253
4.7 pF	5\%	482212232062	10	2\%	532211190095	13 k	2\%	4822111	90509
5,6 Pf	5\%	482212232506	11 E	2\%	462211190338	15k	2\%	4822111	190196
8,2 pF	5\%	462212232083	12	E 2%	482211190341	16k	2\%	4822111	90346
10 pF	5\%	482212231971	13 E	2\%	4822111 so343	18k	2\%	4622111	50238
12pF	5\%	462212232139	15	E 2%	4822111 so344	20k	2\%	4822111	SO349
18 pF	5\%	482212231769	16	2\%	4822111 so347	22 k	2\%	4822111	90251
22 pF	10\%	482212231837	18	E 2%	532211190139	24k	2\%	4822111	90512
27 pF	5\%	482212231966	20 E	2\%	462211190352	27 k	2\%	4822111	SO542
33 pF	5\%	482212231756	22 E	2\%	482211190186	30 k	2\%	4822111	90216
39 pF	5\%	482212231972	24 E	2\%	482211190355	33 k	2\%	5322111	90267
47 pF	5\%	482212231772	27	2\%	532211190105	36k	2\%	4822111	90514
56 pF	5\%	482212231774	30	2\%	48221 il 90356	39 k	2\%	5322111	90106
68 pF	5\%	482212231961	33	2\%	482211190357	43 k	2\%	4822111	90363
82 pF	10\%	482212231839	36 E	2\%	482211190359	47 k	2\%	4822111	90543
100 pF	5\%	482212231765	39 E	2\%	482211190361	51 k	2\%	5322 III	SC274
120 pF	5\%	462212231766	43 E	2\%	532211690125	56 k	2\%	4822111	SO573
150 pF	5\%	482212231767	47 E	2\%	482211190217	62 k	2\%	5322111	SCR75
180 pF	2\%	482212231794	51	2\%	482211190365	68 k	2\%	4822111	90202
220 pF	5\%	462212231965	56	2\%	482211190239		2\%	4622111	90574
270 pF	5\%	482212232142	62	2\%	482211190367	82 k	2\%	4822111	90575
330 pF	10\%	482212231642	68	2\%	482211190203		2\%	5322111	SC277
390 pF	5\%	482212231771	75 E	2\%	482211190371	100 k	2\%	4822111	90214
170 pF	5\%	482212231727	62	- 2%	482211190124	110 k	2\%	5322111	90269
560 pF	5\%	482212231773	91	2\%	482211190375	120k	2\%	4822111	90568
680 pF	5\%	482212231775	100	E 2%	5322 III 90091	130k	2\%	4822111	90511
820 pF	5\%	482212231974	110	E 2%	482211190335	150k	2\%	5322111	90099
1 nF	10\%	532212231647	120	E 2%	482211190339	160k	2\%	5322111	90264
1.2 nF	5\%	482212231807	130	E 2%	482211190164	180k	2\%	4822111	90565
1,5 nF	10\%	482212231761	150	E 2\%	532211190096	200	2\%	4822111	90351
1.8 nF	10\%	482212232153	160	E 2%	482211190345	220	2\%	4822111	90197
2.2 nF	10\%	482212231644	180	E 2%	532211190242	240	2\%	4822111	90215
2.7 nF	10\%	482212231783	200	2\%	482211190348	270	2\%	4822111	90302
3,3 nF	10\%	482212231969	220 E	2\%	482211190178	300	2\%	5322111	90266
3.9 nF	10\%	482212232566	240 E	2\%	482211190353	330	2\%	4822111	90513
4,7 nF	10\%	482212231784	270 E	2\%	482211190154	360	2\%	4822111	90515
5,6 nF	10\%	482212231916	300 E	2\%	482211190156	390	2\%	4822111	90182
6,8 nF	10\%	462212231976	330 E	2\%	532211190106	430	2\%	4822111	90168
10 nF	10\%	482212231728	360 E	1\%	482211190288	470k	2\%	4822111	90161
12 nF	10\%	532212231648	360 E	2\%	462211190358	510 k	2\%	4822111	90364
15nF	10\%	462212231782	390 E	2\%	532211190138	560k	2\%	4822111	90169
18nF	10\%	462212231759	430 E	2\%	482211190362	620k	2\%	4822111	90213
22 nF	10\%	482212231797	470 E	2\%	532211190109	680k	2\%	4822111	90368
27 nF	10\%	462212232541	510 E	2\%	482211190245	750 k	2\%	4822111	90369
33 nF	10\%	462212231981	560 E	2\%	532211190113	820k	2\%	4822111	90205
47 nF	10\%	482212232542	620 E	2\%	4822111900368	910 k	2\%	4822111	90374
56 nF	10\%	482212232183	680 E	2\%	482211190162	1M	2\%	4822111	90252
100 nF	10\%	482212231947	750 E	2\%	532211190306	1,1 M	5\%	4822111	90408
180 nF	10\%	462212232915	820 E	2\%	482211190171	1.2 M	5\%	4822111	90409
			910 E	2\%	482211190372	1.3 M	5\%	4822111	90411
			1 k	2\%	532211190092	1,5 M	5\%	4822111	90412
,	hips 0,1	5 W S1206 NPO	1.1	2\%	482211190336	1,6 M	5\%	4822111	90413
			1,2	2\%	532211190096	1.8 M	5\%	4822111	90414
OE	j unper	482211190163	1,3	2\%	482211190244	2 M	5\%	4822111	90415
16 11 E	5 \%	462211190184	1.5 k	2\%	482211190151	2.2 M	5\%	4822111	90185
11.2 E	5%	482211190377	1,6k	2\%	532211190265	2.4 M	5\%	4822111	90416
1,2E	5%	462211190378	1,8 k	2\%	532211190101	2.7 M	5\%	4622111	90417
1,3E	5 \%	462211190379	2 k	2\%	482211190165	3 M	5\%	4822111	90418
1.5 E	5 \%	482211190381	$2,2 \mathrm{k}$	2\%	482211190248	3. 3 M	5\%	48221119	9019:
1. 6 E	5 \%	462211190382	2.4 k	2\%	482211190289	3. 6 M	5\%	462211	90419
2 E	5\%\%	462211190383	2,7 k	2\%	482211190569	3. 9 M	5\%	4622111	90421
2,2E	5\%	4225322111111900384	3 k 3	2\%	482211190198 482211190157	4.3 M	5\%	482211	90422
	5\%		3,3 k	2\%	482211190157	4.7 M	5\%	4822111	90423
2.4 E	5\%	482211190365	3.6 k	2\%	532211190107		5\%	4822111	90424
2.7 E		482211190386	3,9 k	2\%	462211190571	5.6 M	5\%	4822111	90425
3 E	5 \%	482211190387	4.3 k	2\%	4822111900167	6.2 M	5\%	4822111	90426
3. 3 E	5\%	482211190368	4.7 k	2\%	532211190111		5\%	4622111	SO235
3.6 E	5 \%	482211190359	5,1 k	2\%	532211190268	7.5 M	5\%	4822111	90427
3.9 E	5 \%	482211190391	5.6 k	2\%	482211190572	8.2 ll	5\%	4822111	90237
4.3 E	5 \%	482211190392	6.2 k	2\%	482211190545	9.1 M	5\%	48221111	90428
$\begin{aligned} & \text { 4. } 7 \mathrm{E} \\ & \text { 5. } 1 \mathrm{E} \end{aligned}$	5 \% 5	$\begin{array}{rlr} 5322111 & 90376 \\ 4822 & 111 & 90393 \end{array}$	6, 8 k	2\%	462211190544	10M	5\%	5322111	191141

BLOCK DIAGRAM

